Recapping what we just did: we took three facts from lecture and combined them to derive, step-by-step, interpretations for all of the regressions involving logarithms. Let's use these interpretations to fill in the worksheet part of **Section Handout 2, part 3**:

We want to see how food consumption (y) measured in \$/year is related to household income (x) measured in \$/year. How would we interpret each of the following regressions?

Name	Functional Form	Interpretation in Words
linear ("constant returns")	$y = \beta_0 + \beta_1 x$	Ceteris paribus, when income increases by,
		food consumption increases by $\widehat{\beta_1}(z)$
log ("decreasing returns")	$y = \beta_0 + \beta_1 log x$	Ceteris paribus, when income increases by z percent,
		food consumption increases by $\underline{\qquad} \frac{1}{100}\widehat{\beta_1}(z)$
log-linear ("increasing returns")	$logy = \beta_0 + \beta_1 x$	Ceteris paribus, when income increases by,
		food consumption increases by $100\widehat{\beta_1}(z)$ percent
log-log ("constant elasticity")	$logy = \beta_0 + \beta_1 logx$	Ceteris paribus, when income increases by z percent,
		food consumption increases by $\widehat{\beta}_1(z)$ percent

Let's do a real example with some numbers. Here I'm going to use different functional forms for regressions relating hourly wage (in \$) with years of education, using Wooldridge's data from example 2.4.

Name	Regression Results	Interpretation in Words
linear ("constant returns")	$\widehat{wage} = -0.90 + 0.54(education)$	Ceteris paribus, when education increases by 1 year , wage changes by 0.54(1) = \$0.54 .
log ("decreasing returns")	$\widehat{wage} = -7.46 + 5.33 \log(education)$	Ceteris paribus, when education increases by 10%, wage increases by $\frac{1}{100}$ 5.33(10) = \$0.533.
log-linear ("increasing returns")	$\log(\widehat{wage}) = 0.58 + 0.08(education)$	Ceteris paribus, when education increases by 1 year , wage increases by $100(0.08)(1)\% = 8\%$.
log-log ("constant elasticity")	log(wage) = -0.44 + 0.83log(education)	Ceteris paribus, when education increases by 10% , wage increases by $0.83(10)\% = 8.3\%$.